Note

Notebook name: 03d__Demo-TECxTMS_2F.ipynb (download .ipynb)
Alternative view with nbviewer - sometimes the formatting below can be messed up as it is processed by nbsphinx

Demo TECxTMS_2F (total electron content)

Authors: Ashley Smith

Abstract: Access to the total electric contents (level 2 product).

[1]:
# %load_ext watermark
# %watermark -i -v -p viresclient,pandas,xarray,matplotlib
[2]:
from viresclient import SwarmRequest
import datetime as dt
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

request = SwarmRequest()

TECxTMS_2F product information

Derived total electron content (TEC)

Documentation: - https://earth.esa.int/web/guest/missions/esa-eo-missions/swarm/data-handbook/level-2-product-definitions#TECxTMS_2F

Check what “TEC” data variables are available

[3]:
request.available_collections("IPD", details=False)
[3]:
{'IPD': ['SW_OPER_IPDAIRR_2F', 'SW_OPER_IPDBIRR_2F', 'SW_OPER_IPDCIRR_2F']}
[4]:
request.available_measurements("TEC")
[4]:
['GPS_Position',
 'LEO_Position',
 'PRN',
 'L1',
 'L2',
 'P1',
 'P2',
 'S1',
 'S2',
 'Elevation_Angle',
 'Absolute_VTEC',
 'Absolute_STEC',
 'Relative_STEC',
 'Relative_STEC_RMS',
 'DCB',
 'DCB_Error']

Fetch one day of TEC data

[5]:
request.set_collection("SW_OPER_TECATMS_2F")
request.set_products(measurements=request.available_measurements("TEC"))
data = request.get_between(dt.datetime(2014,1,1),
                           dt.datetime(2014,1,2))
[1/1] Processing:  100%|██████████|  [ Elapsed: 00:01, Remaining: 00:00 ]
      Downloading: 100%|██████████|  [ Elapsed: 00:04, Remaining: 00:00 ] (9.311MB)

Loading as pandas

[6]:
df = data.as_dataframe()
df.head()
[6]:
S1 Elevation_Angle LEO_Position Latitude P1 Radius PRN DCB_Error Relative_STEC_RMS L1 Absolute_STEC S2 P2 DCB L2 GPS_Position Relative_STEC Absolute_VTEC Longitude Spacecraft
2014-01-01 00:00:04 36.83 39.683333 [6668214.544000001, -1677732.674, -177943.9959... -1.482419 2.182913e+07 6.878338e+06 15 0.832346 0.555675 -6.261986e+06 16.429938 36.83 2.182914e+07 -11.446853 -6.261989e+06 [22448765.690377887, 5421379.431197803, -13409... 24.041127 10.894886 -14.122572 A
2014-01-01 00:00:04 34.75 37.478137 [6668214.544000001, -1677732.674, -177943.9959... -1.482419 2.135749e+07 6.878338e+06 18 0.832346 0.488000 -1.466568e+07 16.456409 34.75 2.135749e+07 -11.446853 -1.466568e+07 [16113499.491062254, -16306172.004347403, -126... 22.754795 10.461554 -14.122572 A
2014-01-01 00:00:04 30.90 24.681787 [6668214.544000001, -1677732.674, -177943.9959... -1.482419 2.277638e+07 6.878338e+06 22 0.832346 1.313984 -5.455452e+06 20.434286 30.90 2.277638e+07 -11.446853 -5.455454e+06 [10823457.339250825, -24014739.352816023, -248... 15.585271 9.529846 -14.122572 A
2014-01-01 00:00:04 29.87 24.647445 [6668214.544000001, -1677732.674, -177943.9959... -1.482419 2.298846e+07 6.878338e+06 24 0.832346 0.899036 -3.402816e+06 20.085094 29.87 2.298847e+07 -11.446853 -3.402821e+06 [20631539.59055339, 13441368.439225309, 100505... 52.291341 9.357587 -14.122572 A
2014-01-01 00:00:04 30.88 30.753636 [6668214.544000001, -1677732.674, -177943.9959... -1.482419 2.229899e+07 6.878338e+06 25 0.832346 0.546729 -2.285981e+06 15.676947 30.88 2.229900e+07 -11.446853 -2.285986e+06 [16637723.905075422, -10692759.977004562, 1761... 52.672067 8.597559 -14.122572 A

NB: The time interval is not always the same:

[7]:
times = df.index
np.unique(np.sort(np.diff(times.to_pydatetime())))
[7]:
array([datetime.timedelta(0), datetime.timedelta(seconds=10)],
      dtype=object)
[8]:
len(df), 60*60*24
[8]:
(49738, 86400)

Loading and plotting as xarray

[9]:
ds = data.as_xarray()
ds
[9]:
<xarray.Dataset>
Dimensions:            (Timestamp: 49738, WGS84: 3)
Coordinates:
  * Timestamp          (Timestamp) datetime64[ns] 2014-01-01T00:00:04 ... 2014-01-01T23:59:54
  * WGS84              (WGS84) <U1 'X' 'Y' 'Z'
Data variables:
    Spacecraft         (Timestamp) object 'A' 'A' 'A' 'A' ... 'A' 'A' 'A' 'A'
    Latitude           (Timestamp) float64 -1.482 -1.482 -1.482 ... -81.7 -81.7
    P1                 (Timestamp) float64 2.183e+07 2.136e+07 ... 2.171e+07
    PRN                (Timestamp) uint16 15 18 22 24 25 29 ... 7 15 16 18 21 26
    DCB_Error          (Timestamp) float64 0.8323 0.8323 ... 0.8323 0.8323
    Relative_STEC_RMS  (Timestamp) float64 0.5557 0.488 1.314 ... 0.6458 3.041
    Absolute_STEC      (Timestamp) float64 16.43 16.46 20.43 ... 10.77 10.78
    S2                 (Timestamp) float64 36.83 34.75 30.9 ... 23.03 37.73 37.5
    P2                 (Timestamp) float64 2.183e+07 2.136e+07 ... 2.171e+07
    DCB                (Timestamp) float64 -11.45 -11.45 ... -11.45 -11.45
    L2                 (Timestamp) float64 -6.262e+06 -1.467e+07 ... -3.41e+06
    GPS_Position       (Timestamp, WGS84) float64 2.245e+07 ... -2.111e+07
    Longitude          (Timestamp) float64 -14.12 -14.12 -14.12 ... 1.559 1.559
    S1                 (Timestamp) float64 36.83 34.75 30.9 ... 23.03 37.73 37.5
    Elevation_Angle    (Timestamp) float64 39.68 37.48 24.68 ... 49.64 45.71
    LEO_Position       (Timestamp, WGS84) float64 6.668e+06 ... -6.808e+06
    Radius             (Timestamp) float64 6.878e+06 6.878e+06 ... 6.88e+06
    L1                 (Timestamp) float64 -6.262e+06 -1.467e+07 ... -3.41e+06
    Relative_STEC      (Timestamp) float64 24.04 22.75 15.59 ... 16.92 26.51
    Absolute_VTEC      (Timestamp) float64 10.89 10.46 9.53 ... 8.365 7.912
Attributes:
    Sources:         ['SW_OPER_TECATMS_2F_20140101T000000_20140101T235959_0301']
    MagneticModels:  []
    RangeFilters:    []
[10]:
fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(15,5), sharex=True)
ds["Absolute_VTEC"].plot.line(x="Timestamp", ax=axes[0])
ds["Absolute_STEC"].plot.line(x="Timestamp", ax=axes[1]);
fig.subplots_adjust(hspace=0)
../_images/Swarm_notebooks_03d__Demo-TECxTMS_2F_16_0.png